Part Number Hot Search : 
2BA32 BR86DL SC141B GBPC1508 VBO25 00000 B7717 F9223
Product Description
Full Text Search
 

To Download TISP4360H3BJ Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TISP4360H3BJ BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
Copyright (c) 1999, Power Innovations Limited, UK JUNE 1999
OVERVOLTAGE PROTECTOR FOR ADSL MODEMS & SPLITTERS
q
Matched to POTS + ADSL Voltages - Working Voltage, VDRM . . . . . . . . . . . . .290 V - Protection Voltage, V(BO). . . . . . . . . . . .360 V High FCC, Bellcore & ITU Surge Ratings
WAVE SHAPE 2/10 s 10/160 s 10/700 s 10/560 s 10/1000 s STANDARD GR-1089-CORE FCC Part 68 ITU-T K20/21 FCC Part 68 FCC Part 68 GR-1089-CORE ITSP A 500 250 200
SMBJ PACKAGE (TOP VIEW)
q
R(B) 1
2 T(A)
MDXXBG
device symbol
T
160 100
q
High UL 1950, Bellcore & ITU AC Capability
STANDARD UL 1950 (ANNEX NAC) APPLIED AC `4360 IT(OV)M LIMIT A RMS s 40 7 2.2 60 GR-1089-CORE 30 15 2.2 ITU-T K20/21 23 1 0.04 4.2 SURVIVES 0.015 0.08 0.48 SURVIVES 0.15 SURVIVES
SD4XAA
R Terminals T and R correspond to the alternative line designators of A and B
q q
Large creepage distance . . . . . . . . . 2.54 mm Low Capacitance . . . . . . . . . . . . 24 pF @ 50 V . . . . . . . . . . . . . .70 pF @ 0
description
The TISP4360H3BJ is designed to limit overvoltages on equipment used for telephone lines carrying POTS (Plain Old Telephone System) and ADSL (Asymmetrical Digital Subscriber Line) signals. TISP4360H3BJ a.c. overload limits are specified for designers to select the correct overcurrent protectors to meet safety requirements, e.g. UL 1950. The protector consists of a symmetrical voltage-triggered bidirectional thyristor. Overvoltages are initially clipped by breakdown clamping. If sufficient current is available from the overvoltage, the breakdown voltage will rise to the breakover level, which causes the device to switch into a low-voltage on-state condition. This switching action removes the high voltage stress from the following circuitry and causes the current resulting from the overvoltage to be safely diverted through the protector. The high holding (switch off) current prevents d.c. latchup as the diverted current subsides. The TISP4360H3BJ is guaranteed to voltage limit and withstand the listed international lightning surges in both polarities. This high (H) current protection device is in a plastic SMBJ package (JEDEC DO-214AA with J-bend leads) and supplied in embossed carrier reel pack. For alternative voltage and holding current values, consult the factory.
PRODUCT
INFORMATION
1
Information is current as of publication date. Products conform to specifications in accordance with the terms of Power Innovations standard warranty. Production processing does not necessarily include testing of all parameters.
TISP4360H3BJ BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
JUNE 1999
absolute maximum ratings, TA = 25C (unless otherwise noted)
RATING Repetitive peak off-state voltage, (see Note 1) Non-repetitive peak on-state pulse current (see Notes 2, 3 and 4) 2/10 s (GR-1089-CORE, 2/10 s voltage wave shape) 8/20 s (IEC 61000-4-5, 1.2/50 s voltage, 8/20 current combination wave generator) 10/160 s (FCC Part 68, 10/160 s voltage wave shape) 5/200 s (VDE 0433, 10/700 s voltage wave shape) 0.2/310 s (I3124, 0.5/700 s voltage wave shape) 5/310 s (ITU-T K20/21, 10/700 s voltage wave shape) 5/310 s (FTZ R12, 10/700 s voltage wave shape) 10/560 s (FCC Part 68, 10/560 s voltage wave shape) 10/1000 s (GR-1089-CORE, 10/1000 s voltage wave shape) Non-repetitive peak on-state current (see Notes 2, 3 and 5) 20 ms (50 Hz) full sine wave 16.7 ms (60 Hz) full sine wave 1000 s 50 Hz/60 Hz a.c. Maximum overload on-state current without open circuit, 50 Hz/60 Hz a.c. 0.015 s 0.04 s 0.08 s 0.15 s 0.48 s 4.2 s Initial rate of rise of on-state current, Junction temperature Storage temperature range NOTES: 1. 2. 3. 4. 5. Exponential current ramp, Maximum ramp value < 200 A diT/dt TJ Tstg IT(OV)M 60 40 30 23 15 7 400 -40 to +150 -65 to +150 A/s C C A rms ITSM 55 60 2.2 A ITSP 500 300 250 220 200 200 200 160 100 A SYMBOL VDRM VALUE 290 UNIT V
See Applications Information and Figure 9 for voltage values at lower temperatures. Initially the TISP4360H3BJ must be in thermal equilibrium with TJ = 25C. The surge may be repeated after the TISP4360H3BJ returns to its initial conditions. See Applications Information and Figure 10 for current ratings at other temperatures. EIA/JESD51-2 environment and EIA/JESD51-3 PCB with standard footprint dimensions connected with 5 A rated printed wiring track widths. See Figure 7 for the current ratings at other durations. Derate current values at -0.61 %/C for ambient temperatures above 25 C
PRODUCT
2
INFORMATION
TISP4360H3BJ BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
JUNE 1999
electrical characteristics for the T and R terminals, TA = 25C (unless otherwise noted)
PARAMETER IDRM V(BO) Repetitive peak offstate current Breakover voltage Impulse breakover voltage Breakover current On-state voltage Holding current Critical rate of rise of off-state voltage Off-state current VD = VDRM dv/dt = 750 V/ms, RSOURCE = 300 dv/dt 1000 V/s, Linear voltage ramp, V(BO) Maximum ramp value = 500 V di/dt = 20 A/s, Linear current ramp, Maximum ramp value = 10 A I(BO) VT IH dv/dt ID dv/dt = 750 V/ms, RSOURCE = 300 0.15 0.15 5 TA = 85C Vd = 1 V rms, VD = 0, Vd = 1 V rms, VD = -1 V Vd = 1 V rms, VD = -2 V Vd = 1 V rms, VD = -50 V Vd = 1 V rms, VD = -100 V 70 60 55 24 22 10 84 67 62 28 26 pF 0.6 3 0.6 A V A kV/s A IT = 5 A, tW = 100 s IT = 5 A, di/dt = +/-30 mA/ms Linear voltage ramp, Maximum ramp value < 0.85VDRM VD = 50 V f = 100 kHz, f = 100 kHz, Coff Off-state capacitance f = 100 kHz, f = 100 kHz, f = 100 kHz, 372 V TEST CONDITIONS TA = 25C TA = 85C MIN TYP MAX 5 10 360 UNIT A V
thermal characteristics
PARAMETER TEST CONDITIONS EIA/JESD51-3 PCB, IT = ITSM(1000), RJA Junction to free air thermal resistance TA = 25 C, (see Note 6) 265 mm x 210 mm populated line card, 4-layer PCB, IT = ITSM(1000), TA = 25 C NOTE 50 MIN TYP MAX 113 C/W UNIT
6: EIA/JESD51-2 environment and PCB has standard footprint dimensions connected with 5 A rated printed wiring track widths.
PRODUCT
INFORMATION
3
TISP4360H3BJ BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
JUNE 1999
PARAMETER MEASUREMENT INFORMATION
+i ITSP Quadrant I Switching Characteristic
ITSM IT VT IH
V(BO)
I(BO)
-v IDRM
VDRM
VD
ID ID VD VDRM
IDRM +v
I(BO)
IH
V(BO)
VT IT ITSM
Quadrant III Switching Characteristic ITSP -i
PMXXAAB
Figure 1. VOLTAGE-CURRENT CHARACTERISTIC FOR T AND R TERMINALS ALL MEASUREMENTS ARE REFERENCED TO THE R TERMINAL
PRODUCT
4
INFORMATION
TISP4360H3BJ BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
JUNE 1999
TYPICAL CHARACTERISTICS
OFF-STATE CURRENT vs JUNCTION TEMPERATURE
100 VD = 50 V Normalised Breakover Voltage 10 |ID| - Off-State Current - A
TCHAG
1.10
NORMALISED BREAKOVER VOLTAGE vs JUNCTION TEMPERATURE TC4HAF
1.05
1
0*1
1.00
0*01
0*001 -25 0 25 50 75 100 125 TJ - Junction Temperature - C 150
0.95 -25 0 25 50 75 100 125 TJ - Junction Temperature - C 150
Figure 2. ON-STATE CURRENT vs ON-STATE VOLTAGE
200 150 100 70 IT - On-State Current - A 50 40 30 20 15 10 7 5 4 3 2 1.5 1 0.7 1 1.5 2 3 45 VT - On-State Voltage - V 7 10 Normalised Holding Current TA = 25 C tW = 100 s 1.5
Figure 3. NORMALISED HOLDING CURRENT vs JUNCTION TEMPERATURE TC4HAD
TC4HACA
2.0
1.0 0.9 0.8 0.7 0.6 0.5 0.4 -25 0 25 50 75 100 125 TJ - Junction Temperature - C 150
Figure 4.
Figure 5.
PRODUCT
INFORMATION
5
TISP4360H3BJ BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
JUNE 1999
TYPICAL CHARACTERISTICS
NORMALISED CAPACITANCE vs OFF-STATE VOLTAGE TC4HABA
1 0.9 0.8 Capacitance Normalised to VD = 0 0.7 0.6 0.5 0.4 TJ = 25C Vd = 1 Vrms
0.3
0.2 0.5
1
2
3 5 10 20 30 50 VD - Off-state Voltage - V
100150
Figure 6.
PRODUCT
6
INFORMATION
TISP4360H3BJ BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
JUNE 1999
RATING AND THERMAL INFORMATION
NON-REPETITIVE PEAK ON-STATE CURRENT vs CURRENT DURATION
ITSM(t) - Non-Repetitive Peak On-State Current - A 30 20 15 10 9 8 7 6 5 4 3 2 1.5 0*1 1 10 100 1000
TI4HAC
MAXIMUM OVERLOAD ON-STATE CURRENT vs CURRENT DURATION
70 60 50 40 30 25 20 15 10 8 7 6 5 4 3 2.5 2 0*01 UL 1950 600 V rms TESTS (1, 2 & 5) TISP4360H3BJ IT(OV)M
TI4HAJ
VGEN = 600 Vrms, 50/60 Hz RGEN = 1.4*VGEN/ITSM(t) EIA/JESD51-2 ENVIRONMENT EIA/JESD51-3 PCB TA = 25 C I - RMS Current - A
VGEN = 600 Vrms, 50/60 Hz RGEN = VGEN/IT(OV)M EIA/JESD51-2 ENVIRONMENT EIA/JESD51-3 PCB TA = 25 C
0*1
t - Current Duration - s
1 10 t - Current Duration - s
100
1000
Figure 7. VDRM DERATING FACTOR vs MINIMUM AMBIENT TEMPERATURE
1.00 0.99 0.98 Derating Factor 0.97 0.96 0.95 0.94 0.93 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 TAMIN - Minimum Ambient Temperature - C
Figure 8. IMPULSE RATING vs AMBIENT TEMPERATURE
700 600 500 400 Impulse Current - A 300 250 ITU-T 10/700 200 FCC 10/560 150 120 BELLCORE 10/1000 100 90 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 IEC 1.2/50, 8/20 BELLCORE 2/10
TI4HADA
TC4HAA
FCC 10/160
TA - Ambient Temperature - C
Figure 9.
Figure 10.
PRODUCT
INFORMATION
7
TISP4360H3BJ BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
JUNE 1999
APPLICATIONS INFORMATION deployment
These devices are two terminal overvoltage protectors. They may be used either singly to limit the voltage between two conductors (Figure 11) or in multiples to limit the voltage at several points in a circuit (Figure 12).
Th3 Th1 Th1 Th2
Figure 11. TWO POINT PROTECTION
Figure 12. MULTI-POINT PROTECTION
In Figure 11, protector Th1 limits the maximum voltage between the two conductors to V(BO). This configuration is normally used to protect circuits without a ground reference, such as modems. In Figure 12, protectors Th2 and Th3 limit the maximum voltage between each conductor and ground to the V(BO) of the individual protector. Protector Th1 limits the maximum voltage between the two conductors to its V(BO) value. If the equipment being protected has all its vulnerable components connected between the conductors and ground, then protector Th1 is not required.
impulse testing
To verify the withstand capability and safety of the equipment, standards require that the equipment is tested with various impulse wave forms. The table below shows some common values.
PEAK VOLTAGE STANDARD SETTING V GR-1089-CORE 2500 1000 1500 FCC Part 68 (March 1998) I3124 ITU-T K20/K21 800 1500 1000 1500 1500 4000 VOLTAGE WAVE FORM s 2/10 10/1000 10/160 10/560 9/720 9/720 0.5/700 10/700 PEAK CURRENT VALUE A 500 100 200 100 37.5 25 37.5 37.5 100 CURRENT WAVE FORM s 2/10 10/1000 10/160 10/560 5/320 5/320 0.2/310 5/310 TISP4360H3BJ 25 C RATING A 500 100 250 160 200 200 200 200 SERIES RESISTANCE 0 0 0 0 0 0 0
FCC Part 68 terminology for the waveforms produced by the ITU-T recommendation K21 10/700 impulse generator
Series resistance can be added to cover situations where either the TISP4360H3BJ current rating will be exceeded or excessive wiring currents result or both. When a primary protector is used, the TISP4360H3BJ may operate before the primary protector. With the TISP460H3BJ in a low voltage state, the primary protector is prevented from working. High currents, which should have been carried by the primary protector, now flow through the wiring to the equipment and through the TISP4360H3BJ. Interference and network equipment damage can occur, particularly if the currents are diverted to the local ground. Protector co-ordination prevents this problem. A series resistor can be used to develop a voltage drop large enough to activate the primary protector. If the primary protector was a gas discharge tube (GDT) with a maximum d.c. sparkover of 400 V and the typical lightning impulse decay time was several hundred microseconds (TISP4360H3BJ rating 200 A), a 2 series resistor (400 V/200 A) would
PRODUCT
8
INFORMATION
TISP4360H3BJ BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
JUNE 1999
be sufficient to achieve co-ordination. At peak currents of 200 A and above, the resistor would develop at least 400 V and GDT would switch and divert the current. If the impulse generator current exceeds the protectors current rating then a series resistance can be used to reduce the current to the protectors rated value and so prevent possible failure. The required value of series resistance for a given waveform is given by the following calculations. First, the minimum total circuit impedance is found by dividing the impulse generators peak voltage by the protectors rated current. The impulse generators fictive impedance (generators peak voltage divided by peak short circuit current) is then subtracted from the minimum total circuit impedance to give the required value of series resistance. In some cases the equipment will require verification over a temperature range. By using the rated waveform values from Figure 10, the appropriate series resistor value can be calculated for ambient temperatures in the range of -40 C to 85 C.
a.c. testing
The protector can withstand currents applied for times not exceeding those shown in Figure 7. Currents that exceed these times must be terminated or reduced to avoid protector failure. Fuses, PTC (Positive Temperature Coefficient) resistors and fusible resistors are overcurrent protection devices which can be used to reduce the current flow. Protective fuses may range from a few hundred milliamperes to one ampere. In some cases it may be necessary to add some extra series resistance to prevent the fuse opening during impulse testing. The current versus time characteristic of the overcurrent protector must be below the line shown in Figure 7. In some cases there may be a further time limit imposed by the test standard (e.g. UL 1459/1950 wiring simulator failure). Safety tests require that the equipment fails without any hazard to the user. For the equipment protector, this condition usually means that the fault mode is short circuit, ensuring that the following circuitry is not exposed to high voltages. The ratings table and Figure 8 detail the earliest times when a shorted condition could occur. Figure 8 shows how the protector current levels compare to UL 1950 levels. Only the UL 1950 600 V tests (1, 2 and 3) are shown as these have sufficient voltage to operate the protector. Tests 4 (<285 V peak, 2.2 A) and 5 (120 V rms, 25 A) are too low in voltage to operate the protector. Figure 8 shows that the TISP4360H3BJ curve is very close or better than the UL 1950 test levels. Design compliance is simply a matter of selecting an overcurrent protector which operates before the UL 1950 times up to 1.5 s. Fuses such as the Littelfuse 436 series and 2AG (Surge Withstand type) series and Bussmann TCP series have a 600 V capability for UL 1950. Fuses rated in the range of 0.5 A to 1.5 A will usually meet the safety test requirements. However, the lower rated current value fuses may open on the type A surges of FCC Part 68. Opening on a type A surge is not a test failure, but opening on a type B surge (37.5 A 5/320) is; so the selected fuse must be able to withstand the type B surge.
capacitance
The protector characteristic off-state capacitance values are given for d.c. bias voltage, VD, values of 0, -1 V, -2 V -50 V and -100 V. Values for other voltages may be calculated by multiplying the VD = 0 capacitance value by the factor given in Figure 6. Up to 10 MHz the capacitance is essentially independent of frequency. Above 10 MHz the effective capacitance is strongly dependent on connection inductance.
normal system voltage levels
The protector should not clip or limit the voltages that occur in normal system operation. If the maximum system voltages are not known, then designers often used the voltages for the FCC Part 68 "B" ringer. The "B" ringer has a d.c. voltage of 56.5 and a maximum a.c. ring voltage of 150 V rms. The resultant waveform is shown in Figure 13. The maximum voltage is -269 V, but, because of possible wiring reversals, the protector should have a working voltage of 269 V minimum. The standard TISP4350H3BJ protector meets this requirement with a working voltage, VDRM, of 275 V and a protection voltage, V(BO), of 350 V. Figure 14 shows the TISP4350H3BJ voltages relative to the POTS -269 V peak ringing voltage.
PRODUCT
INFORMATION
9
TISP4360H3BJ BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
JUNE 1999
200 V +156 V 100 V
-230 -240 -250 -260 -270 -280 -275 V
-269 V RINGING PEAK
WORKING VOLTAGE VDRM
0 -56.5 V d.c. -100 V
-290 -300 -310 -320 -330 -340 -350 -269 V -360
AI4XAD
TISP4350H3BJ
-200 V
-350 V
PROTECTION VOLTAGE V(BO)
AI4HAE
-300 V
-370
Figure 13.
Figure 14.
The ADSL signal can be as high as 15 V and this adds to the POTS signal making a peak value of -284 V. This increased signal value of -284 V would be clipped by the TISP4350H3BJ, which only allows for a -275 V signal. The TISP4360H3BJ has been specified to overcome this problem by having a higher working voltage of 290 V. Figure 15 shows the TISP4360H3BJ voltages relative to the -284 V peak ADSL plus POTS ringing voltage. The 15 V ADSL signal is shown as a grey band in Figure 15.
-230 -240 -250 -260 -270 -280 -290 -300 -310 -320 -330 -340 -350 -360 -370 PROTECTION VOLTAGE V(BO) -360 V
AI4HAF
-284 V PEAK ADSL + RINGING
-290 V
WORKING VOLTAGE VDRM
TISP4360H3BJ
Figure 15. The recommended PCB pad layout for the TISP4360H3BJ SMB package (see mechanical section) gives a creepage distance of 2.54 mm between the device terminals. This distance value allows compliance to the minimum clearance values required by UL 1950 for operational, basic and supplementary insulation and creepage values for pollution degree 1.
PRODUCT
10
INFORMATION
TISP4360H3BJ BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
JUNE 1999
JESD51 thermal measurement method
To standardise thermal measurements, the EIA (Electronic Industries Alliance) has created the JESD51 standard. Part 2 of the standard (JESD51-2, 1995) describes the test environment. This is a 0.0283 m3 (1 ft3) cube which contains the test PCB (Printed Circuit Board) horizontally mounted at the centre. Part 3 of the standard (JESD51-3, 1996) defines two test PCBs for surface mount components; one for packages smaller than 27 mm on a side and the other for packages up to 48 mm. The SMBJ measurements used the smaller 76.2 mm x 114.3 mm (3.0 " x 4.5 ") PCB. The JESD51-3 PCBs are designed to have low effective thermal conductivity (high thermal resistance) and represent a worse case condition. The PCBs used in the majority of applications will achieve lower values of thermal resistance and so can dissipate higher power levels than indicated by the JESD51 values.
PRODUCT
INFORMATION
11
TISP4360H3BJ BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
JUNE 1999
typical circuits
MODEM RING FUSE RING DETECTOR HOOK SWITCH TISP4360 TIP AI6XBMB D.C. SINK SIGNAL RING WIRE Th1 Th2 R1b AI6XBK E.G. LINE CARD TIP WIRE R1a Th3 PROTECTED EQUIPMENT
Figure 16. MODEM INTER-WIRE PROTECTION
Figure 17. PROTECTION MODULE
R1a Th3 Th1 Th2 R1b AI6XBL D.C. SIGNAL
Figure 18. ISDN PROTECTION
OVERCURRENT PROTECTION TIP WIRE R1a
RING/TEST PROTECTION
TEST RELAY
RING RELAY
SLIC RELAY S3a
SLIC PROTECTION
Th4
Th3 Th1 Th2 RING WIRE R1b
S1a
S2a SLIC
Th5 S3b S1b S2b
TISP6xxxx, TISPPBLx, 1/2TISP6NTP2 C1 220 nF VBAT
TEST EQUIPMENT
RING GENERATOR
AI6XBJ
Figure 19. LINE CARD RING/TEST PROTECTION
PRODUCT
12
INFORMATION
TISP4360H3BJ BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
JUNE 1999
MECHANICAL DATA SMBJ (DO-214AA) plastic surface mount diode package
This surface mount package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.
SMB 4,57 4,06
3,94 3,30
2
Index Mark (if needed)
2,40 2,00
1,52 0,76
2,10 1,90 5,59 5,21
0,20 0,10
2,32 1,96
ALL LINEAR DIMENSIONS IN MILLIMETERS
MDXXBHA
PRODUCT
INFORMATION
13
TISP4360H3BJ BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
JUNE 1999
MECHANICAL DATA recommended printed wiring footprint.
SMB Pad Size 2.54
2.40
2.16 ALL LINEAR DIMENSIONS IN MILLIMETERS
MDXXBI
device symbolization code
Devices will be coded as below. As the device parameters are symmetrical, terminal 1 is not identified.
DEVICE TISP4360H3BJ SYMOBLIZATION CODE 4360H3
carrier information
Devices are shipped in one of the carriers below. Unless a specific method of shipment is specified by the customer, devices will be shipped in the most practical carrier. For production quantities the carrier will be embossed tape reel pack. Evaluation quantities may be shipped in bulk pack or embossed tape.
CARRIER Embossed Tape Reel Pack Bulk Pack ORDER # TISP4360H3BJR TISP4360H3BJ
PRODUCT
14
INFORMATION
TISP4360H3BJ BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
JUNE 1999
MECHANICAL DATA tape dimensions
SMB Package Single-Sprocket Tape
4,10 3,90 2,05 1,95
1,65 1,55 1,85 1,65 0,40 MAX.
5,55 5,45
12,30 11,70
8,20 MAX.
8,10 7,90 Direction of Feed
o 1,5 MIN. Carrier Tape Embossment 20
0 MIN.
Cover Tape 4,5 MAX.
Maximium component rotation
Index Mark (if needed)
Typical component cavity centre line Typical component centre line
ALL LINEAR DIMENSIONS IN MILLIMETERS NOTES: A. The clearance between the component and the cavity must be within 0,05 mm MIN. to 0,65 mm MAX. so that the component cannot rotate more than 20 within the determined cavity. B. Taped devices are supplied on a reel of the following dimensions:Reel diameter: 330 3,0 mm Reel hub diameter 75 mm MIN. Reel axial hole: 13,0 0,5 mm C. 3000 devices are on a reel. MDXXBJ
PRODUCT
INFORMATION
15
TISP4360H3BJ BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
JUNE 1999
IMPORTANT NOTICE
Power Innovations Limited (PI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to verify, before placing orders, that the information being relied on is current. PI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with PI's standard warranty. Testing and other quality control techniques are utilized to the extent PI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. PI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor is any license, either express or implied, granted under any patent right, copyright, design right, or other intellectual property right of PI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. PI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORISED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS.
Copyright (c) 1999, Power Innovations Limited
PRODUCT
16
INFORMATION


▲Up To Search▲   

 
Price & Availability of TISP4360H3BJ

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X